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The transport and fate of reactive chemicals in groundwater is governed by
equations which are often difficult to solve due to the nonlinear relationship
between the solute concentrations for the liquid and solid phases. The
nonlinearity may cause mass balance errors during the numerical simulation in
addition to numerical errors for linear transport system. We have generalized the
modified Picard iteration algorithm of Celia e al.’ for unsaturated flow to solve
the nonlinear transport equation. Written in a ‘mixed-form’ formulation, the total
solute concentration is expanded in a Taylor series with respect to the solution
concentration to linearize the transport equation, which is then solved with a
conventional finite element method. Numerical results of this mixed-form
algorithm are compared with those obtained with the concentration-based
scheme using conventional Picard iteration. In general, the new solver resulted in
negligible mass balance errors (< |107%|%) and required less computational time
than the conventional iteration scheme for the test examples, including transport
involving highly nonlinear adsorption under steady-state as well as transient flow
conditions. In contrast, mass balance errors resulting from the conventional
Picard iteration method were higher than 10% for some highly nonlinear
problems. Application of the modified Picard iteration scheme to solve the
nonlinear transport equation may greatly reduce the mass balance errors and

increase computational efficiency.
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INTRODUCTION

The specter of groundwater contamination looms over
many industrialized, suburban, and rural areas. Mount-
ing evidence indicates that leaching of environmental
contaminants through the vadose zone to groundwater
represents an increasing threat to the subsurface
environmental quality and the public health. Contami-
nants may come from many sources, such as landfills,
leaking underground storage tanks, spill sites, hazar-
dous waste sites, septic tank systems, leaking industrial
and municipal wastewater lagoons, and nonpoint source
pollution associated with agricultural practices.'® There
is a strong demand for quantifying the movement and
retention of solutes in the subsurface environment.
Computer models are often used to predict the behavior
of contaminants in the subsurface to better protect
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groundwater resource and plan effective remediation
strategies. Solute transport problems are relatively
difficult to solve due to their nonlinear and hyperbolic
nature, space and time dependent boundary conditions,
and nonhomogeneous parameters. Analytical solutions
can rarely be obtained for such real world systems.
Therefore in most cases transport equations have to be
solved by numerical approximations.>* However,
numerically solving the transport problem is often
challenged by numerical dispersion and oscillations,
and frequently ends up with misleading results. Inaccu-
rate results of numerical formulations may be a major
cause for much confusion in the quantitative analyses of
solute transport.

The development of efficient numerical solution
methodologies for the convection—dispersion transport
equation (CDE) has received considerable attention in
recent years. Numerical instability resulting from the
inherent hyperbolic nature of the equation is one of
the major numerical problems. The convection term
causes severe numerical oscillations and instability,
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especially when convection is dominant in the
convection—dispersion iransport equation and/or sharp
concentration fronts exist. Algorithms specially designed
for convection-dominated transport problems can be
Eulcrian,l’z'm Lagrangian,7 or Lagrangian—Eulerian for-
mulations.!720323435 These methods have significantly
reduced numerical dispersion and oscillatory behavior
associated with the standard numerical schemes.

Another major problem in solving the CDEs is the
mass balance error pertaining to its nonlinear nature
when transport involves physical and chemical reactions
such as degradation, adsorption, and production.
Although a good mass balance does not guarantee an
accurate solution, mass conservation is an essential
requirement for an accurate numerical algorithm. To
reduce the mass balance error, small time steps and
iterative procedures are usually required to solve a
nonlinear equation or a system of coupled nonlinear
equations, which in turn makes the solution very time-
consuming. Numerical experience for some cases,
depending on the nature and degree of the nonlinearity,
shows that mass balance errors may not be effectively
eliminated even when very small time steps are used. In
flow and transport modeling, most attention has been
paid to overcoming the nonlinearity of the flow
problems and eliminating the numerical dispersion and
spurious oscillations of the transport problems. In
contrast, numerical problems related to the nonlinear
nature of the solute transport equation have not been
addressed sufficiently. Celia ef al.* presented an optimal
test function (OTF) method to solve the contaminant
transport problem involving nonlinear reactions and
biodegradation. One class of methods that has received
much attention in the groundwater modeling literature
for nonlinear transport is the operator splitting technique
(OST).(””‘B’“'33 The nonlinear system of advection—
dispersion-reaction equations is split into a system of
linear partial differential equations involving the advec-
tion—dispersion equations and a system of nonlinear
ordinary differential equations involving the reaction
equations. Although this technique was shown to be
convergent’’ and may produce relatively accurate solu-
tions, it may cause mass balance errors, especially for
transport involving continuous mass flux boundary
conditions.?® Kaluarachchi and Morshed'*showed that
the OST may also produce significant mass balance
errors if the transport equation includes a first-order
decay reaction.

In dealing with the nonlinear problem of water flow,
Celia er al.’ proposed a mass-conservative numerical
scheme to solve the mixed-form Richards equation using
‘modified Picard iteration’. Because of its perfect mass
balance property, the modified Picard iteration technique
proved to be a major improvement over earlier Picard
methods. It also showed much promise in modeling
unsaturated flow with steep wetting fronts where soil
water flow is extremely nonlinear.>'? In dealing with the

mass balance errors pertaining to the head-based
formulation, Rathfelder and Abriola?? showed that
standard Picard iteration for the head-based form of
the Richards equation could be equally good as the
modified Picard iteration for the mixed form formula-
tion, when the capacity coefficient is evaluated using a
chord-slope approximation.

An alternative method for solving nonlinear flow and
transport problems is Newton iterative scheme. How-
ever, the Newton approach is generally believed to be
inferior to the Picard iteration method, as the latter
preserves symmetry in the matrix.'®?' In addition,
evaluation for the partial derivatives involving nonlinear
terms in the Newton method is often time-consuming
and at times formidable for highly nonlinear problems.

In this work, we generalize the mixed-form algorithm
of Celia et al® to handle the nonlinearity of the
transport equation. This is accomplished by linearizing
a ‘mixed-form’ transport equation (proposed in this
paper) rather than the conventional concentration-based
transport equation, with the modified Picard iteration
method. A conventional finite element method is then
used to solve the linearized formulation to obtain the
solution for concentration. The solution quality is
evaluated based on mass balance errors and computa-
tional efficiency. Numerical experiments are presented to
illustrate the promising solution performance of the
proposed iteration method as compared with the
conventional Picard scheme for various transport
examples.

BACKGROUND
Transport equation

Contaminant migration in subsurface is the result of
physical, chemical, and biological processes occurring
in the soil or aquifer where fluids containing the
contaminants percolate. We will focus on one-
dimensional transport, since the extension to two- or
three-dimensional systems is straightforward. The one-
dimensional solute transport is generally described by
the following convection—dispersion transport equation:

Hc  Ops 0 Oc oqc
797*5‘52(‘%2) T M
= Aps + 1l + vp — Sc (1)

where c¢ is the solute concentration of the liquid phase
(ml“3), s is the solute concentration of the solid
adsorbed phase (mm™'), D is the dispersion coefficient
(12T“l), q is the Darcy flux density (T, and A, and A,
are first-order decay coefficients (T~') for the liquid and
solid phases, respectively, -, and ~ are zero-order raie
constants for the liquid (ml™>T™'") and solid (T )
phases, respectively, p is the soil bulk density (ml™?), S is
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the source/sink term such as root water uptake (1/T), ¢
is the volumetric water content (I’I%), and ¢, is the
solute concentration of the water extracted by plant
roots (ml_3), t is time (T), and z denotes the vertical
distance from the soil surface downward (1).

The dispersion coefficient, D is defined as

D=6%+DOT (2)

where ¢ is the dispersivity (1) of the medium, Dy is the
ionic or molecular diffusion coefficient in free water
(1*T71), and 7 is a tortuosity factor. The tortuosity
factor is evaluated as a function of the water content
using the relationship of Millington and Quirk:!®

r=0"7/92 3)

where 6, is the saturated water content or, approxi-
mately, the porosity (1’1 ). The influence of sorption on
contaminant transport is of particular importance
because it may slow down the transport of contaminants
from the surface to groundwater, thereby allowing more
time for dissipation by microbial and chemical trans-
formations. Sorption may also cause tailing effects,
especially for nonlinear sorption.2*?® Therefore sorption
isotherms are essential for describing transport of
solutes in soil and groundwater. Equation (1) requires
an expression relating the adsorbed concentration, s,
with the liquid concentration, ¢. In this study we
assumed that the adsorbed and liquid concentrations
are always in local equilibrium. A general expression for
the adsorption isotherm is given by

s=1(c) (4)

where f(c) is an arbitrary function which is generally
nonlinear; hence eqn (1) will also become nonlinear.
Therefore an iterative solution scheme, similar to the
one applied to the variably-saturated flow equation,
must be used to solve such a nonlinear transport
equation,

Substitution of eqn (4) into eqn (1) leads to the final
form of the solute transport equation considered in this
paper:

&Rc I ( BDac) dqc
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where the retardation factor is defined as

R=1+§£§cc—) (6)

and the decay function is given by

pkc™!

A=Ay + —9—)\5 (7)
and the synthetical production term is given by
I = v40 + vp — Scs (8)

Note that the retardation factor, R, according to eqn (6),

is related to the ratio f(c)/c instead of the isotherm
slope 8f(c)/dc of the conventional definition.”® Both A
and R are nonlinear coefficients of the concentration c.
Equation (5) is considered to be a ‘concentration-based
formulation’. Almost all current numerical methods
solve eqn (5) directly for the solution of concentration,
¢, using the numerical approaches available for non-
linear differential equations. Among others, the Picard
iteration method has been widely used to deal with the
nonlinearity. The modified Picard iteration method,
however, has been shown to be one of the best
approaches for solving nonlinear problems.*?

Modified Picard iteration algorithm

The modified Picard iteration method of Celia e al.’
was developed for solving the mixed-form Richards
equation for water flow in a variably-saturated porous
medium

99 _ 9 (0ny 0K
ot Oz Oz Oz

where 4 is the pressure head (L), 6 is the volumetric
water content (131‘3), and X is the hydraulic conductivity
[IT"']. 8 and K both are a function of 4. S is the source/
sink term defined in eqn (1). The mixed-form of the
Richards equation is considered to possess the mass
conservative property inherent in the water content-
based equation (not present here), while providing
solutions in terms of the pressure head, 4.

Using a fully implicit (backward Euler) time approx-
imation and representing the water content, 8"*H"*! by
the first-order approximation

de
dh

S ©)

n+l,m
n+l,m+l _ pont+lm n+1,m+1 n+l,m
] ~ 0 + (h —H )

(10)

the modified Picard iteration scheme of Celia ez al.” for
the mixed form flow eqn (9) is given as follows:

Cn+1,m hn+1,m+1 _ hn+],m 6n+1,m L
h At At
a w1 8hn+l,m+l 3
-5 [K =5 -1]|=0 (11)

where C, = df/dh is the specific soil water capacity
1Y), the superscripts # and m denote time level and
iteration level, respectively, and where, for simplicity,
the sink term, S, has been ignored. The second term on
the left-hand side of eqn (11) corresponds to the time
derivative and is the key term for maintaining perfect
mass balance.

Celia et al’ claimed that the mass-conservative
property of eqn (11) holds for all types of boundary
conditions and all numerical approximations that
maintain spatial symmetry. The numerical performance
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of the modified Picard iteration method was further
improved by Huang et al.'? by implementing a new
convergence criterion and tested for comprehensive
infiltration scenarios including highly nonlinear soil
hydraulic properties, very dry soil conditions, layered
soil, and two dimensions. In all tests, mass balance
errors produced by implementing the modified Picard
iteration method were almost zero (< |107%]%).
Generalization of the modified Picard iteration
algorithm to solve the nonlinear solute transport
solution is fairly straightforward, and will be discussed
in the following section by observing the physical and
mathematical similarity between the flow eqn (9) and the
‘mixed-form’ transport equation to be defined below.

IMPLEMENTATION

We first rewrite the governing eqn (5) into a ‘mixed-
form’

oM 9 Oc dqc

where M is the solute content, i.e. the total concentra-
tion of solute per unit volume of soil (ml™>), defined as

M = 0c+ pf (c) (13)

The similarity between the transport eqn (12) and the
flow eqn (9) is obvious if we compare the components of
one equation with the other (see Table 1).

Perceiving the similarity between the solute transport
equation and water flow equation, it is not surprising to
motivate the generalization of the modified Picard
iteration scheme to the nonlinear transport equation.
The procedures for implementing this scheme are
basically the same as those for water flow equation,
which are described in the preceding section. First, the
implicit backward time scheme is applied to eqn (12)

Mn+l,m+l M B p) (HDaan,mH) 6qcn+l,m+1

At T8z 9z oz

—(Me)" 4 T (14)

Note that no iterations are required for the total source
term I. Second, following the modified Picard philoso-
phy, we perform the Taylor expansion for M ntlm+l

Table 1. Similarity between the transport eqn (12) and the flow
eqn (9)

Transport equation Flow equation

Pressure head %
Water content 6(4)
Gravitational flow

Concentration ¢

Solute content M (c)
Convectional transport
Hydrodynamic dispersion Hydraulic conduction

Decay and Production terms  Sink and source terms
Specific solute capacity dM/dc Specific water capacity d8/dh

with respect to ¢ at ¢"*1'"
1,
Mn+l,m+] zMn-H,m_{_ oM mrhm
dc
><(cn+l,m«+—1 _ Cn-+—l,m) (15)

Substituting eqn (15) into eqn (14) yields the modified
Picard iteration formulation for the mixed-form trans-
port equation

Cn+1,m cn+l,m+1 . cn+l,m N Mn+l,m — M"
g At At
) ) n+1,m+1 F;) Jntl,m+]
=?9?(9D —— | - - 00T
z

(16)

where C,, similar to the specific water capacity, is the
specific solute capacity (I’1>) defined as
oM af (¢)
G=% =%
Equation (16) describes the proposed modified Picard
iteration method for the nonlinear transport equation.
The degree of nonlinearity in the adsorption isotherm,

(17)
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Fig. 1. Langmuir—Freundlich isotherm (eqn (19)) with different
exponent 3 (a), and the specific solute capacity curve for
3 =0-5, assuming § = 0-45cm®em > (b).
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invoked by the exponent (3, is demonstrated in Fig. 1a. It
can be seen from the Fig. 1b that the specific solute
capacity function according to eqn (17) can be highly
nonlinear for a solute undergoing a nonlinear adsorp-
tion described by the Langmuir—Freundlich isotherm
(eqn (19)). The high nonlinearity is characterized by
significant changes in the solute capacity, 8M /8¢, in the
lower concentration range.

For convenience of comparison, the standard Picard
iteration method for the transport eqn (5) with mass-
lumped algorithm is given below

1
0Rn+l’mcn+l,m+ _ P (aDacn+1,m+l)

At ~ oz 9z
1,m+1
_BQC’;Z mt _0,\n+1,mcn+1,m+1 +T (18)
where R™1™ and A™'"'™ are nonlinear functions of

concentration ¢ as defined in eqns (6) and (7),
respectively.

PERFORMANCE EVALUATION

The performance of the modified Picard iteration
method to solve the nonlinear transport equation is
evaluated for several examples. Solutions are obtained
by solving the discretized transport eqn (16) using the
mass-lumped linear Galerkin finite element method
which has been proved to be superior to consistent
formulations in terms of mass conservation.’ The
general Langmuir—Freundlich model'' is used to
describe the adsorption isotherm for the numerical
tests in this study

o Qke)

Tk (ko) )

where @ is the total amount of surface sites or the
maximum sorption capacity, k (mm™') is an ‘overall
affinity’ coefficient, and 0 < S < | is a dimensionless
fitting parameter. Note that for 5 = 1, eqn (19) reduces
to the Langmuir sorption scenario, while the Freundlich
isotherm is the limiting case of the general model (19)
when 1/k> ¢

s= kfcﬂ (20)

where k; = Qk°.

Numerical results were obtained by implementing the
proposed modified Picard iteration algorithm into the
computer code HYDRUS.? The HYDRUS code
simulates one-dimensional water flow, solute transport,
and heat movement in variably-saturated porous media
using a linear finite element method. In all examples, a
maximum permitted number of iterations of 20 was used
for each time step. Simulations were run on a Pentium
16 bit, 90 MHZ personal computer.

For simplicity, an initial solute free distribution
condition was assumed in each simulation. To ensure
better mass conservation nature at the influx boundary,
a flux boundary condition, as suggested by van
Genuchten and Parker,”’ was used at the soil surface
(z=0cm). All examples were run by assuming free-
drainage at the bottom boundary, leading to a unit-
hydraulic gradient condition for water flow and a
zero-concentration gradient condition for solute trans-
port, respectively.

The proposed algorithm was evaluated based on the
mass balance error (MBE) and the solution accuracy.
According to the mass continuity equation, the MBE for
solute was defined as the difference between the net
amount of solute added to the system and the change in
the amount of solute stored in the system after a given
elapsed time. Although focus of this study will be
primarily on the discussion on the mass balance error,
the computational efficiency will also be investigated.

Verification of the proposed method

We verified our numerical solutions by comparison with
‘exact solutions’. Since it is very difficult or essentially
impossible to obtain an analytical solution for nonlinear
convection—dispersion transport problems, we obtained
the ‘exact solutions’ by the method of characteristics
(MOC). This method incorporates the nonlinear decay
and equilibrium-controlled sorption into the convection—
dispersion transport equation.” The MOC code imple-
ments the particle tracking technique which is generally
considered to be the most advanced and accurate
method for solving the convection—dispersion transport
problems.’** Two benchmark problems of Goode and
Konikow® were simulated: (1) an 80-s pulse of solute
subject to a Freundlich adsorption into a 12-cm
homogeneous, solute free soil column having a uniform
pore-water velocity, v =¢/0 =0-1cms™'; (2) an 80-s
pulse of solute under the same flow condition, but subject
to a Langmuir adsorption. A source concentration
Co =0-05mgl~" was used for both pulse experiments.
Other transport parameters used for the simulations
include: dispersion coefficient D = 0-0lcm?s™!, the
porosity P = 0-37, and the soil bulk density p = 1-587 g
cm ™. For Freundlich adsorption, equilibrium coefficient
ky =03 cm® g~! and slope exponent 3 = 0-7, while for
Langmuir adsorption, equilibrium coefficient £ = 100
cm? g_l, maximum sorption capacity Q = 0-003gg_1,
and 3 = 1-0 were used. Simulations were carried out for
solute transport with or without decay. The decay rate
constants are 0-01 and 0-1Ls™! for Freundlich and
Langmuir isotherms, respectively. As adopted in the
MOC modeling, the solution domain was discretized into
120 elements using a uniform increment Az =: 0-1 cm and
a constant time step, At = 0-25s, was used. We assumed
that a convergent solution is achieved when the
difference between the solved concentration values at
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two successive iteration levels satisfies a given criterion,
ie. 6, = |cmthmHl _enthm < 0.0001 mgl~! for all finite
element nodes. Here an L -norm, or max (4.), criterion
is implied.

Figure 2 illustrates the simulated breakthrough curves
(BTCs) for the pulse subject to Freundlich adsorption,
obtained using the method of characteristics, and the
standard and modified Picard iterations. The standard
Picard iteration method, as expected, produced almost
identical results to those of MOC and the proposed
method, for the linear sorption case (3 = 1). The pulse
for the nonlinear adsorption (3 =0-7) is apparently
more retarded than for linear adsorption, resulting in
late breakthrough. The BTCs also exhibit long tailing
due to relatively strong sorption at lower concentra-
tions. Decay further reduces the concentration, most
noticeably around the peak after approximately 4-5 pore
volumes have been leached through. The results
obtained with the proposed scheme agree well with
those calculated by MOC for both linear or nonlinear
sorption cases with almost zero mass balance errors
(£107%%). For nonlinear transport with or without
decay reaction, however, the predicted BTCs by the
standard Picard method deviated largely from those
produced by both MOC and the proposed algorithm,
with a mass balance error ranging from 5 to 15%. The
BTCs simulated using the standard method also exhibit
a lower peak and greater spreading than those calculated
by MOC and the modified Picard iteration scheme.

The comparison of the simulated BTCs for the
Langmuir sorption scenario [eqn (19) with §=1] is
illustrated in Fig. 3. the nonlinear nature of the isotherm

wor [ Standard
Proposed
. MOC

B = 1.0 (no decay)
-«

06 [

B =0.7 (no decay)

crc,

0.4 .
“. B=0.7(decay)

0.2

Pore Volume, vt/z

Fig. 2. Breakthrough curves (BTCs) predicted with the
standard and the modified Picard iteration methods as well
as the method of characteristics (MOC) for transport during
steady-state flow with linear (8 = 1-0) and nonlinear (3 = 0-7)
Freundlich sorption (example after Goode and Konikow®).

produced a sharp breakthrough. The tailing phenom-
enon in this case is not as distinct as that of Freundlich
sorption, due to lesser nonlinearity. The proposed
method almost duplicated the BTCs of the MOC for
both transport with and without decay. For this mildly
nonlinear transport problem, the standard Picard
iteration method also predicted the data fairly well in
the absence of decay, with about 1% mass balance error.
However, noticeable discrepancies between the BTCs
produced by the standard iteration scheme and those
obtained with the proposed method or the MOC can be
observed when decay reaction is incorporated, with a
mass balance error of 5% resulting from the conven-
tional iteration method.

Generally speaking, for a stable and convergent
numerical algorithm, an ‘exact solution’ may be
obtained by using relatively small discretizations and a
strict convergence criterion for the iteration. We
generated such an ‘exact solution’ for solute transport
involving highly nonlinear Freundlich sorption
(8 = 0-5) by the proposed algorithm, using a relatively
small temporal step, Az = (0-01 h, and a relatively strict
convergence tolerance (6, < 10™*gl1™"). A solution of
concentration Cy = 1-0g1™! was applied at a constant
rate of g =2-0cmh™! to a homogeneous soil column
under saturated steady-state flow condition for a
duration of 5h, followed by a leaching with solute free
water (Cy = 0-0gl™"). Transport parameters used in this
test problem are: D = 0-01 cm’? h'l, 0 = 0-45cm’ cm“3,
p=1587gem™, and kr = 0-3. In this and subsequent
examples, the soil column is assumed to be 200-cm long
discretized with a uniform spatial step, Az = 1cm.

wor M, T Standard
Proposed
] MOC
0.8 -
/ no decay
0.6
o
Q
(&3
04 [
02
0 1 2 3 4 S

Pore Volume, vt/z

Fig. 3. Simulated BTCs at depth z = 8 cm with the standard
and the modified iteration methods as well as the MOC for
transport during steady-state flow with Langmuir sorption

(8 =10).
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Fig. 4. Comparison of numerical solutions obtained with the

proposed and the conventional Picard iteration methods with

‘exact’ solutions for transport under steady-state flow condition
with Freundlich sorption (3 = 0-5).

Figure 4 shows the comparison of the concentration
distributions simulated by the proposed iteration
method using a relatively large time step, At =0-1h,
and a relaxed convergence criterion, 8, = 0-001gl™,
with the ‘exact solutions’. The solutions of the proposed
method, having near zero mass balance errors, agree
very well with the exact solutions. By comparison, the
solutions produced by the standard Picard iteration
method with the same time step and convergence
criterion apparently deviate from the exact solutions,
with a mass balance error of 2-5 ~ 3-0% which increases
with the elapsed time of transport.

Performance for transient flow conditions

It can be seen from the above examples that the
proposed iteration method precisely conserved the mass
and produced very accurate solutions, while the conven-
tional Picard iteration scheme induced serious mass
balance errors and, as a result, caused inaccurate
predictions of concentration distributions both in space
and in time, for highly nonlinear problems. The solute
transport problems investigated in the previous sections
involved steady-state flow with a uniform velocity. Most
solute transport problems, however, involve transient
flow conditions. Numerical simulations for solute trans-
port under transient flow are generally much more
complicated than that under uniform steady-state flow
condition. We will therefore investigate the mass balance

errors of the modified and the standard Picard iteration
methods for solute transport under unsteady flow, and
for different degrees of nonlinearity (different 3 values)
of the Langmuir—Freundlich isotherm with equilibrium
coefficient k = 0-12gg™" and maximum sorption capa-
cityQ=05g g~!. We may also include a decay reaction
assuming A, = 0-01h~! and A =001h"! As stated
earlier, all simulations invoked a solution domain of
200cm with constant spatial increments (Az) of 1cm,
and used a maximum permitted number of iterations of
20, and a convergence tolerance of 6, = 0-001 gl_].

We considered a variably-saturated water infiltration
assuming a constant rate of 2cmh ™" into an initially dry
soil (pressure head h; = —10°cm of water) with water
retention and hydraulic conductivity functions being
described by

96, 1
bs =6 [1+ (ala)m'""

K=KSY1-(

S, = (21)

_ S:/(n—l))l—l/n]l (22)

Solution Concentration, C (g/l.)
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Fig. 5. Concentration profiles (a), and breakthrough curves (b)

calculated using the standard and modified Picard iteration

schemes for solute transport during infiltration into a dry soil
subject to Langmuir—Freundlich sorption of g = 1-0.
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where S, is the effective saturation, 6, and 4, are the
residual and saturated water contents (131'3), respec-
tively, K, is the saturated hydraulic conductivity (IT™"),
and a(1™!) and » are shape parameters. Except where
mentioned otherwise, the following hydraulic parameters
were used for transient flow simulations: K, = 2cmh™",
a=002cm™, n=20, §,=045cm*’cm™, and 6, =
0-05cm*cm™. The flow solutions were obtained by
solving eqn (13), the mixed-form Richards equation
implemented with the modified Picard iteration method.
The time step (Ar) was automatically updated, within a
given minimum and maximum, according to the con-
vergence history of the previous simulation run. The
dispersion coefficient was calculated according to eqn
(2), assuming a dispersivity of 0-01cm and negligible
molecular diffusion.

Figure 5a and b presents the simulated concentration
distribution profile and breakthrough curve, respec-
tively, for a solute pulse injection and subsequent
leaching for a typical Langmuir adsorption isotherm
(8 = 1-0). For this mildly nonlinear transport problem,
both the modified and the standard Picard methods
produced very close concentration distributions (Fig.
5a) at earlier time (¢ = Sh) with a relatively small MBE
(0-7%) for the conventional method. Close results
between the two methods can also be found in Fig. 5b
for the BTC observed at a relatively short distance,
z = 25cm, from the inlet boundary. However, the mass
balance error introduced by the conventional Picard
method increased with time to 4:7% at ¢ = 40 h. Almost
zero mass balance errors were produced by the modified
Picard scheme for all simulation periods. Excellent
performance of the modified Picard scheme was also
exhibited in the simulation for solute transport involving
decay reactions. Again the standard iteration method
produced relatively accurate solutions for earlier time
(t =5h) but introduced considerable mass balance
errors increasing with time (Fig. 6a). The increasing
discrepancy between the solutions of the proposed
iteration scheme and those of the standard Picard
iteration method can also be seen in the BTCs (Fig.
6b). The BTCs are quite close at a relatively short
distance, z = 25cm, but those BTCs for z = 100cm
clearly deviate. It can be inferred from these two
simulations that the new iteration method also bears
perfect mass-conservation nature for nonlinear trans-
port under transient flow conditions.

Performance for different nonlinearities

Accurate solutions for the highly nonlinear transport
equation are often difficult to obtain with standard
numerical schemes because of the strong dependency of
the solution concentration on the adsorbed concentra-
tion in solid phase and other chemical reaction
characteristics.'3% To avoid computational errors, such
problems usually require very small time increments

and large numbers of iterations, hence representing
a challenging computational task. We examined the
performance of the proposed iteration method for solute
transport involving different nonlinearities; results are
summarized in Table 2. We again assumed the case of
constant-flux infiltration into a dry soil. Since the
nonlinear nature of the Langmuir—Freundlich isotherm
is primarily represented by the exponent 3, we decided to
vary only the parameter (0-5, 0-8, and 1-0 corresponding
to high, moderate, and mild nonlinearities, respectively)
while keeping the same k (0-12gg™') and Q (0-5gg™").
These three adsorption isotherms are presented in Fig. 1a
to show the degree of nonlinearity related to isotherm
exponent 8. Values of other transport parameters were
kept the same as those used in the preceding section. The
solutions for transport involving mildly nonlinear
adsorption (8 = 1-0), as demonstrated in Figs 5 and 6,
have indicated that the proposed method (resulting in
nearly zero MBE) is much more accurate than the
conventional method (up to 4:7% of MBE) in terms of
mass conservation. For intermediate nonlinearity of

Solution Concentration, C (g/L)
0.0 0.2 0.4 0.6 0.8 1.0

50

E
L
N 00K N - Standard
£ Proposed
Q.
[
[=]
180 -
(a)

200

. 1.0
-l =
:', - z2=25cm (b)
o 08
c |
R
=
g 0.6 -
c B
]
g
5 0.4 -
o |
s
= 02
3
5 L
/2]
0

Time, t (hr)
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Table 2. Cumulative mass balance errors (%) resulting from the
standard iteration method*

Numerical experimental scenarios

Time g=10 =10, =08 =08, 8=05 =045,

(min) decay decay decay
5 -4-33 434 —-669 —-607 885 —9-07

20 411 -417 -663 -596 —-824 91

40 -414 -431 -776 -695 -96 —13.07

*The modified Picard iteration algorithm produced almost
zero (|6 < 107¢ %) mass balance errors for all scenarios.

adsorption (3 = 0-8), solutions obtained with the stan-
dard iteration method suffered from mass balance errors
of about 7% for both transport scenarios with or without
decay (see Table 2), while the proposed scheme perfectly
conserved the mass, i.e. having zero mass balance errors
(results are not presented further). Also note that the
mass balance errors induced by the conventional method
for the highly nonlinear case (3 = 0-5) are more than
twice as those for the mildly nonlinear adsorption
scenario (3 = 1-0).
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Fig. 7. Predicted concentration profiles (a), and breakthrough
curves (b) by the standard and modified iteration schemes for
solute transport under unsaturated flow condition and subject
to highly nonlinear Langmuir—Freundlich sorption (8 = 0-5).

The greatest advantage of the proposed iteration
scheme over the standard method is exhibited by the
simulation for a highly nonlinear adsorption with the
Langmuir exponential coefficient 8 = 0-5. Mass balance
errors caused by the standard method are near 10% for
most evaluation times. When the nonlinear decay
reactions were incorporated in the transport, the mass
balance error was up to 13% (see Table 2). The
proposed numerical scheme again produced nearly
zero mass balance errors even for this extremely non-
linear transport problem. The predicted concentration
versus distance and time is presented in Fig. 7a and b,
respectively. Due to the highly nonlinear favorable
adsorption, the incoming concentration front remains
very steep (Fig. 7a) as compared with the case of less
favorable adsorption (8= 1:0). The increased non-
linearity also resulted in much more retardation than
the less nonlinear transport scenario (3 = 1-0); after the
same transport time, the solute has penetrated farther
for 8 = 1-0 than for 8 = 0-5. The calculated concentra-
tion distributions by the proposed iteration scheme and
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soil having highly nonlinear Langmuir—Freundlich sorption
(8 = 0-5) and decay.
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the standard method are fairly close at carly time
(¢ = 5h), but the discrepancy between the two solutions
increases with the transport time. A similar performance
of the proposed method can be observed in Fig. 8 for
transport involving decay. The standard iteration
scheme gave rise to even larger mass balance errors (as
high as 12%), while the new method maintained very
precise mass balance.

As can be seen from the above examples, computa-
tional mass balance error increases with the degree of
the nonlinearity, corresponding to the decrease of
from 1-0 (mildly nonlinear) to 0-5 (extremely nonlinear),
when the nonlinear transport equation is solved by the
standard iteration method. In contrast, induced mass
balance errors by the modified iteration scheme are
almost zero even when highly nonlinear problem is
solved. These findings indicate a significant advantage of
the proposed iteration method over the traditional
method for transport problems involving high non-
linearity.

Computational efficiency

Accurate yet computationally efficient numerical algo-
rithm is a prerequisite for any numerical model of flow
and transport in porous media. Accurate solutions may
be obtained by using very small discretizations and strict
tolerance in the numerical model, as long as the
numerical scheme used is stable and convergent.
However, tremendous computational efforts required
to obtain a meaningful and accurate prediction of the
flow and transport processes may make the numerical
model impractical. Consequently, computational effi-
ciency becomes even more desirable for long-term
simulations of large-scale, multi-dimensional, hetero-
geneous, and, especially, nonlinear flow and transport
problems. This section compares the computational
requirements by the proposed iteration method with
those by the standard scheme for the numerical tests
presented before. Summarized in Table 3 are the total
numbers of iterations used for each simulation by the
modified and the standard iteration algorithms as well
as the average number of iterations required for each
step for various simulations. Two simulation scenarios
were included in this table: solute transport under
unsteady flow condition and subject to the Langmuir—
Freundlich type adsorption with different exponent
coefficient 3 (examples illustrated in the section Perfor-
mance for Different Nonlinearities); and the other
transport scenario involved steady-state flow condition
and Freundlich type adsorption (example of the secticn
Verification of the Proposed Method). As is shown in
Table 3, the number of iterations for both the proposed
method and the standard scheme generally increases
with the degree of nonlinearity, as manifested primarily
by the exponent 3. However, the rate of increase with
the standard method was much faster in comparison

with the modified iteration scheme. For the proposed
method, the average number of iterations for each time
step varied from 2-5 to 3-0, while the standard method
required 3-0 to 6-0 of iterations for each time step. As a
result, the total number of iterations for the proposed
modified Picard iteration scheme was much smaller than
that of the standard method. The proposed scheme
required only half as much the computational efforts as
the standard method for the highly nonlinear transport
cases (3 = 0-5): 0-15min of CPU time (the proposed)
versus 0-30min (the standard) for the transport invol-
ving Freundlich type adsorption isotherm, and 1-:3min
(the proposed) versus 2-7min (the standard) for the
Langmuir-Freundlich type adsorption scenario. Table 3
also shows that the number of iterations for the
proposed method is comparable to or slightly greater
than that for the standard method for the transport with
B =1 (an essentially linear adsorption scenario). These
findings point out an additional advantage of using the
proposed iteration algorithm instead of traditional
scheme to enhance the computational efficiency for
highly nonlinear transport problems.

SUMMARY AND CONCLUSIONS

The modified Picard iteration algorithm of Celia er al.’
was generalized to solve the solute transport problem
involving nonlinear adsorption and decay. Instead of
solving the concentration-based transport equation as
widely used in the conventional numerical schemes, the
proposed method solved a mixed-form formulation of
the transport eqn (12). The core of the proposed
iteration scheme was given by eqn (15), the first-order
Taylor series expansion of the discrete total concentra-
tion M "1™+ with respect to the liquid concentration ¢
around ¢"™1'™ calculated at previous iteration level m.
The modified Picard iteration method was successfully
applied to a large number of one dimensional transport
problems involving a variety of adsorption isotherms
with different degrees of nonlinearity, and transient or
steady-state flow conditions. The performance of the
proposed method was evaluated against the commonly
used standard Picard iteration algorithm. The following
conclusions could be drawn from our numerical experi-
ments:

1. The new method assured a perfect mass balance,
the calculated concentration distributions for all
numerical experiments were essentially free of mass
balance error (MBE). As a result, the proposed
method produced very close results as the ‘exact’
solutions obtained by the method of characteristics
(MOC). In contrast, the standard iteration method
always resulted in mass balance errors ranging
from 5 to 15%, depending on the degree of
nonlinearity inherent in the transport problem.
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2. Computational efforts (the average number of
iterations for each time step and the total number
of iterations) using the proposed method were
usually considerably less than the standard
method. Computational efficiency for the modified
Picard method is particularly remarkable when the
transport problem involved highly nonlinear
adsorption.

3. The modified Picard iteration scheme was found to
be more robust than the standard method for
transport associated with highly nonlinear adsorp-
tion and decay (8 = 0-5, for example). Numerical
solutions for these extreme conditions using the
standard method suffered from serious mass
balance errors that increase with the simulation
time.

Although the proposed iteration method is primarily
tested for one-dimensional transport problems, general-
ization of the proposed scheme to two- or three-
dimensional nonlinear transport scenarios should be
straightforward since our modification mainly involves
the discretization of the partial derivatives related to
time. We believe that in addition to ensuring excellent
mass conservation property, the modified Picard iteration
algorithm may also effectively improve the computational
efficiency.
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